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Fig. S1, A-D. Relationships between the modeled attractor, simulated species richness, 
empirical species richness, and measured environmental variables for each of the 16 
datasets (in four geographical groups). Each dataset is represented by the four panels in a 
row. Within a panel, each point represents one of 9 or 10 elevations within the (rescaled) 
domain at which variables were evaluated. First panel: the regression of empirical 
richness vs. the magnitude of the modeled midpoint attractor function. Second panel: 
unity-line regression (slope = 1, Romdal et al. 2005) of modeled richness vs. empirical 
richness. Third panel: regression of the magnitude of the modeled midpoint attractor 
function vs. the best-fitting (by AIC) environmental variables. Fourth panel: the 
regression of empirical species richness vs. the best-fitting (by AIC) environmental 
variables. See Table S2 for statistical results. As explained in the caption for Table S1, 
the regressions plotted in this figure cannot be assessed for statistical significance, 
because the points are not independent. Nevertheless, R2 is as an appropriate measure of 
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linear goodness-of-fit between variables, sensitive both to linearity and scatter. In the 
plots here, we have set an arbitrary lower threshold of R2 = 0.5 for display of regression 
lines. 	
	
	

	

	

Fig. S2. Sampled (A, B) pairs of midpoint attractor parameters generated by the MCMC 
Gibbs sampler for the Costa Rican arctiine moth dataset. Point width is proportional to 
the coefficient of determination (R2) between modeled and observed species richness 
across the elevational domain. Point color is arbitrary. The green lines indicate an 
optimized pair of parameter values (A = 0.378, B = 0.294), centered in the cluster of 
coordinate pairs with highest R2, which was used to produce the model for the arctiine 
moth dataset in Fig. 3 (main text). 
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Fig. S3. The geometric constraint triangle, subdivided into 16 smaller, equal-sized 
triangles.
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APPENDIX 2: SUPPLEMENTAL TEXT 

SUPPLEMENTAL INTRODUCTION 

Beginning with Lees et al. (1999) and Jetz and Rahbek (2001), many authors have taken 
a statistical approach to integrating geometric constraints with environmental variables, 
treating “pure” MDE model predictions as candidate predictor variables. In most of these 
studies, the observed range-size frequency distribution (RSDF) was sampled without 
replacement to generate the MDE model predictions of expected species richness at each 
location in the domain (Colwell et al. 2004, 2005). The MDE predictions and standard 
environmental variables were then used together in traditional correlative modeling of 
species richness patterns. Increasingly rigorous versions of this statistical approach have 
incorporated formal model selection, spatial statistics, and assessment of multicollinearity 
(Bellwood et al. 2005; Davies et al. 2007; Wu et al. 2012).  

Several studies have integrated constraints and drivers directly, incorporating the 
interacting effects of geometric constraints and environmental drivers on species richness 
(Gotelli et al. 2009), using environmental variables to condition probabilities of range 
placement and expansion within a spatially bounded domain (Storch et al. 2006; Rahbek 
et al. 2007), thus relaxing the assumption of a pure MDE model that all parts of the 
domain are environmentally identical. These models were also conditioned on the 
empirical range size frequency distribution (RSFD). In contrast, Grytnes et al. (2008) 
modeled plant species richness on a bounded elevational gradient by drawing range sizes 
from theoretical distributions and range midpoints from a probability distribution fitted 
directly to the observed richness gradient. 

Rangel and Diniz-Filho (2005) built a stochastic, mechanistic model that 
integrates speciation, range expansion, and extinction on a bounded, monotonic 
environmental “favorability” gradient, without reference to empirical data. The model is 
effectively a spatially explicit version of the neutral model (Hubbell 2001) in a one-
dimensional bounded domain, but with an underlying environmental gradient. The 
Rangel and Diniz-Filho (2005) model generated off-center species richness peaks that 
emerged from the interaction between the gradient and the geometric constraints (Colwell 
& Rangel 2009). Without the environmental gradient—or with a very weak gradient—
Rangel and Diniz-Filho’s model generated a peak of species richness in the center of the 
domain that was qualitatively similar to the predictions of a simple MDE model.  

Wang and Fang (2012) developed a third approach. They fitted a multiple 
regression model of species richness as a response to environmental variables, but they 
used only the subset of species with the smallest geographic ranges to parameterize the 
model. They reasoned that the placement of small-ranged species within a bounded 
domain is little affected by the location of range boundaries, so that, for this subset of 
taxa, correlations between species richness and environmental variables would not be 
distorted by geometric constraints. They then used the resulting model coefficients, 
together with the empirical RSFD, to simulate the placement of range midpoints of the 
larger-ranged species within the bounded domain. They showed that a single 
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environmental model, combined with strong geometric constraints, best explains the 
species richness of both small- and large-ranged plant species along elevational gradients 
in China.  

 

SUPPLEMENTAL MATERIALS AND METHODS 

Dataset selection and preparation 

As a criterion for inclusion in this study, we applied the rule (McCain 2007; McCain 
2009) that at least 70% of the physical gradient between sea level and mountaintop must 
have been sampled and at least four environmental variables had been reported for the 
gradient.  

Each of the 16 datasets (Table S1) was prepared in the same way. Domain limits 
were defined as sea level and the highest elevation on the mountain massif upon which 
the gradient was located. This domain was converted to the unit line, and all empirical 
sampling elevations were proportionally scaled within this [0,1] domain. Environmental 
variables (Table S1) were resampled, as necessary, after smoothing with cubic spline 
interpolation, using the splinefun function in R, version 3.1.1 (R Core Team 2014).  

If the highest elevation at which a species was recorded was not at the highest 
sampling location, the upper boundary for that species range was estimated to occur 
halfway between the highest elevation of recorded occurrence and the next higher 
sampling elevation. If the highest elevation at which a species was recorded at was the 
highest sampling elevation, the upper boundary of that species range was estimated to 
occur halfway between that sampling elevation and the upper limit of the domain. The 
lower boundary for each range was treated analogously, being extended halfway to the 
next lower sampling elevation or halfway to the lower domain limit (sea level), if a 
species was recorded at the lowest sampling elevation, but that sampling elevation was 
not the domain limit. The ranges of each species found at only one sampling elevation 
were treated similarly; otherwise, these point ranges would have had a zero range, and 
would have been lost from the model. We assumed that the occurrence of each species 
was continuous between its estimated upper and lower recorded range boundaries. These 
range-adjustment procedures and assumptions have been widely used in previous studies 
(e.g., Cardelús et al. 2006; Longino et al. 2014). 

The protocol for range adjustment, described above, leaves most datasets without 
any empirical ranges that actually reach the domain boundaries, resulting in zero 
estimated empirical richness at one or both limits of the domain. A few zeroes are real 
(e.g., ants do not occur at very high elevations in the Costa Rica and New Guinea 
gradients), but most others are artifacts of the location of original sampling elevations and 
the range estimation protocol. Data providers (Table S1) were asked in each case whether 
such zeroes in their data sets were real or artifactual. If real, zero richness at the domain 
endpoint (and in some cases adjacent sampling points) was plotted and included in 
analyses; if artifactual, we proportionally adjusted all empirical range midpoints so that 
ranges nearest to the domain limit exactly reached it. The shifts needed to achieve this 
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adjustment, which effectively shifts the domain boundary slightly, were consistently very 
small (0.002 to 0.02 on the unit line).  

To cope with the wide variation among datasets in number and spacing (often not 
uniform) of empirical sampling points, we took a mixed approach. For fitting the attractor 
(see below), we used a series of 11 evenly spaced sampling locations across the entire 
unit line (domain), including both ends of the domain (0 and 1), for all datasets except the 
New Guinea group. The New Guinea transect was sampled in the field at 8 evenly-spaced 
elevations, so with the domain ends added, we used 10 sampling points for fitting the 
attractor in those datasets. For plotting model results (main text Figs. 3, 4, and 5), we 
used the original sampling points for datasets with fewer than 11 original points (eight 
points for the four Papua New Guinea datasets, five for the three Australia datasets, and 
six for North American butterflies), and 11 points for all other datasets. 

The Bayesian Midpoint Attractor model 

The MCMC sampler and richness pattern simulation. We designed a simple MCMC 
Gibbs sampler (Gelman et al. 2013) to select (A, B) pairs for the mean (A) and standard 
deviation (B), the parameters of the Gaussian midpoint attractor, with the objective of 
simulating the richness pattern over the domain for a particular empirical dataset, using 
only the range-size frequency distribution (RSFD) as input. Empirical midpoints were 
completely ignored for the simulations. The goodness of fit between modeled and 
empirical richness was then assessed for each simulation, as detailed below. 

Running the simulation. For each candidate (A, B) pair, each empirical range was 
placed stochastically on the domain, without replacement, using either Algorithm 1 or 2 
(Main text, Materials and Methods). The modeled richness was recorded for L (10 or 11, 
see above) evenly spaced sampling locations across the domain, always including both 
ends of the domain (0 and 1). The process was repeated M (= 100) times, for the same (A, 
B) pair. The mean richness for each of the L sampling points on the domain was then 
computed, among the M runs, to estimate the expected richness pattern, given the (A, B) 
pair and the empirical RSFD. 

Measuring goodness-of-fit. The next step in the MCMC procedure assessed the 
goodness-of-fit (GOF) between the empirical richness pattern and the mean modeled 
richness pattern, for a given candidate (A, B) pair, at the L sampling points. We applied 
three alternative GOF measures: (1) r, the Pearson product-moment correlation 
coefficient (but only when positive), squared; (2) the chi-squared statistic computed on 
standardized richness (the richness at each sampling point, divided by total richness at all 
L points), treating the empirical richness as “expected” and the modeled richness as 
“observed” (as is customary in Bayesian modeling); and (3) the two-sample 
Kolmogorov-Smirnov (K-S) statistic. Note that none of these measures can be used in 
this way to yield a probability test of significance; they are simply mathematically 
suitable measures of GOF for richness patterns. The protocol for choosing the best GOF 
for each dataset is described, in context, in the next section. 

Sampling the parameter space. Using the procedure just described, the MCMC sampler 
tested a series of (A, B) pairs. At each step in this process, a candidate (A, B) pair was 
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proposed by drawing a new value for A and a new value for B from uniform distributions 
[0 < A < 1] and [0 < B < 1]. In Bayesian terms, A was a flat prior, with the full [0,1] 
domain sampled uniformly for the location of the mean (A). For the standard deviation 
(B), we also set the upper limit at 1 because this value produces a spatial pattern of 
richness broader and flatter than any empirical richness pattern we have seen; thus the 
prior distribution of B incorporated this information. (An even higher limit for B could 
have been used, but the results would not have changed.)  

The candidate (A, B) pair was evaluated by running the simulation (M times) and 
assessing goodness-of-fit (GOF) between the mean modeled richness (averaged among M 
runs) and empirical richness (as described above). If the GOF for the candidate (A, B) 
pair was better, or not much worse, than the GOF for the previous pair, the new pair was 
added to the chain and the process repeated. The criterion for “not much worse” is 
important. If only parameter sets (A, B pairs) that yield a better fit than the previous step 
are kept, the chain may become stuck on a local GOF “peak” in the parameter space, and 
fail to detect a higher peak nearby. 

The criterion for accepting a candidate (A, B) pair in our model was the threshold-
for-acceptance ratio T, between the GOF of the candidate (A, B) pair and the GOF of the 
previous (A, B) pair in the chain. The ratio T was compared to a uniform random number 
on the interval [0,1] (Gelman et al. 2013). If T was greater than this number, the 
candidate (A, B) pair was accepted and the chain continued; if T was smaller than this 
number, the candidate pair was rejected, and a new candidate pair was proposed. In this 
way, better pairs (T > 1) were always accepted, and some not-as-good pairs (T < 1) were 
also accepted, ensuring a better sampling of the parameter space.  

For each dataset, C = 200 to 500 candidate pairs were tried, and the accepted (A, 
B) pairs (the chain) were tabulated, each with its GOF and step number in the chain. 
When the process was complete, the accepted (A, B) pairs were plotted (Fig. S2), and 
ranked by their GOF (largest to smallest for Pearson and Kolmogorov-Smirnov GOFs, 
smallest to largest for the chi-squared GOF).  

For each dataset, when results differed substantially between the two stochastic 
range placement algorithms in the Bayesian attractor model (Main text, Materials and 
Methods), GOF measures were used to choose the better of the two algorithms. When 
results differed substantially among GOF measures for a given algorithm for a particular 
dataset, choice of GOF was based on minimizing overall deviation of empirical points 
from the 95% confidence intervals of the model. On the basis of this procedure, Pearson 
correlation emerged as the most successful GOF (13 of 16 datasets), with chi-squared 
providing a better result in two cases (Australian leaf-miners and Bornean geometrid 
moths), and Kolmogorov-Smirnov in one case (North American mammals).  
Midpoint predictor models 

For each of the two midpoint predictor models, we assessed the same set of 
environmental variables used to interpret modeled attractors in the Bayesian midpoint 
attractor model (Table S1), one variable at a time. To construct the probability density 
functions, the [0,1] domain was divided into 1000 bins. For each bin, the magnitude of 
the environmental variable was approximated by linear interpolation between measured 
values at sampling locations on the elevational gradients (Table S1). Next, probabilities 
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for each bin were assigned proportional to these measured values. Finally, a range 
midpoint representing each empirical species was placed stochastically in the domain in 
proportion to these values. For Model 1, no geometric constraints were enforced. In 
Model 2, range placement was constrained by the domain boundaries. 

Midpoint predictor model evaluation. For each midpoint predictor model, we 
calculated the cumulative distribution function (cdf) of species range midpoints across 
the domain, averaged over 1000 simulations. Steeply rising sections of this cdf indicate 
elevations with a high concentration of species range midpoints, whereas flatter sections 
of the cdf indicate elevations where few or no species range midpoints occur. We refer to 
this averaged cdf as the model reference cdf. 

We next constructed the cdf for the empirical midpoint data and calculated the 
maximum difference between this curve and the model reference cdf. This difference is 
the traditional Kolmogorov-Smirnov test statistic. To generate a null distribution and 
estimate the tail probability for the empirical data, we generated 1000 additional midpoint 
distributions with the midpoint predictor model, and for each of these we calculated the 
K-S test statistic between the cdf of the single simulated midpoint distribution and the 
model reference cdf. 

We then compared the histogram of the 1000 simulated K-S differences with the 
observed K-S difference between the empirical data and the model reference cdf. A non-
significant one-tailed value (P > 0.05) indicates an adequate fit with the data. In contrast, 
unusually large K-S values for the observed data would suggest that the midpoint 
predictor model does not successfully reproduce the pattern of midpoints in the data.  
 
Software 

The midpoint attractor simulator and the MCMC sampler were implemented in 4th 
Dimension, in an extension of the RangeModel application (Colwell 2008) that is 
available from the authors. The midpoint predictor models were programmed in R 
version 3.1.1 (R Core Team 2014), with base functions from the EcoSimR development 
package (https://github.com/GotelliLab/EcoSimR), which is available as an R package. R 
scripts for the midpoint predictor model analyses and for plotting the graphics for the 
midpoint attractor models (main text Figs. 3, 4, and 5) are available from the authors.  
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